Publications

Full publication metrics for Patrick R. Veres are available through Web of Science, Google Scholar, or ORCHID

A comprehensive list of publications is provided below

Publication Highlights

Marine Sulfur Oxidation

NASA DC-8 aircraft sampling the atmosphere close to the ocean’s surface where oceanic emissions affects processes like cloud formation. Credit: Sam Hall

News Highlights

Compound discovered during historic airborne research mission

Ocean life helps produce clouds, but existing clouds keep new ones at bay

Relevant Publications

Veres et al. (2020). Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. https://doi.org/10.1073/pnas.2113268118

Novak et al. (2021). Rapid cloud removal of dimethyl sulfide oxidation products limits SO2 and cloud condensation nuclei production in the marine atmosphere https://doi.org/10.1073/pnas.2110472118

Assaf et al. (2023). Measurement of the Intramolecular Hydrogen-Shift Rate Coefficient for the CH3SCH2OO Radical between 314 and 433 K https://doi.org/10.1021/acs.jpca.2c09095

Fung et al. (2022). Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing https://doi.org/10.5194/acp-22-1549-2022


CIMS Research & Development

A VUV ion source designed for the TOFWerk VOCUS mass spectrometer (Breitenlechner et al. 2022)

Relevant Publications

Breitenlechner et al. (2022). A versatile vacuum ultraviolet ion source for reduced pressure bipolar chemical ionization mass spectrometry https://doi.org/10.5194/amt-15-1159-2022

Robinson et al. (2022). Temperature dependent sensitivity of iodide chemical ionization mass spectrometers https://doi.org/10.5194/amt-2022-295

Xu et al. (2022). Chemical ionization mass spectrometry utilizing ammonium ions (NH4+CIMS) for measurements of organic compounds in the atmosphere https://doi.org/10.5194/amt-15-7353-2022

Ji et al. (2020). A vacuum ultraviolet ion source (VUV-IS) for iodide-chemical ionization mass spectrometry: a substitute for radioactive ion sources https://doi.org/10.5194/amt-13-3683-2020

Full Publication List

2023

Magnesium refinery sampled near the Great Salt Lake in Utah, the impact of which is described in Womack et al. 2023. (Photo credit: NOAA)
News Link: Role of US Magnesium’s bromine emissions in Utah’s PM2.5 mess gets new scrutiny
  1. Permar, W., and Coauthors (2023) Assessing Formic and Acetic Acid Emissions and Chemistry in Western U.S. Wildfire Smoke: Implications for Atmospheric Modeling. Environ. sci. Atmos. https://doi.org/10.1039/d3ea00098b 
  2. Assaf, E., Finewax, Z., Marshall, P., Veres, P. R., Neuman, J. A., & Burkholder, J. B. (2023). Measurement of the Intramolecular Hydrogen-Shift Rate Coefficient for the CH3SCH2OO Radical between 314 and 433 K. Journal of Physical Chemistry A, 127(10), 2336–2350. https://doi.org/10.1021/acs.jpca.2c09095
  3. Halfacre, J. W., Stewart, J., Herndon, S. C., Roscioli, J. R., Dyroff, C., Yacovitch, T. I., et al. (2023). Using tunable infrared laser direct absorption spectroscopy for ambient hydrogen chloride detection: HCl-TILDAS. Atmospheric Measurement Techinques, 16(5), 1407–1429. https://doi.org/10.5194/amt-16-1407-2023
  4. Womack, C. C., Chace, W. S., Wang, S., Baasandorj, M., Fibiger, D. L., Franchin Alessandro and Goldberger, L., et al. (2023). Midlatitude Ozone Depletion and Air Quality Impacts from Industrial Halogen Emissions in the Great Salt Lake Basin. Environmental Science & Technology, 57(5), 1870–1881. https://doi.org/10.1021/acs.est.2c05376

2022

A novel method is introduced to estimate fire emissions and to evaluate inventories that when combined with high-resolution satellite retrievals enables emission estimates across broad spatial and temporal scales (Stockwell et al. 2021)
  1. Bourgeois, I., Peischl, J., Neuman, J. A., Brown, S. S., Allen, H. M., Campuzano-Jost, P., et al. (2022). Comparison of airborne measurements of NO, NO2, HONO, NOy, and CO during FIREX-AQ. Atmospheric Measurement Techniques, 15(16), 4901–4930. https://doi.org/10.5194/amt-15-4901-2022
  2. Breitenlechner, M., Novak, G. A., Neuman, J. A., Rollins, A. W., & Veres, P. R. (2022). A versatile vacuum ultraviolet ion source for reduced pressure bipolar chemical ionization mass spectrometry. Atmospheric Measurement Techniques, 15(5), 1159–1169. https://doi.org/10.5194/amt-15-1159-2022
  3. Fung, K. M., Heald, C. L., Kroll, J. H., Wang, S., Jo, D. S., Gettelman, A., et al. (2022). Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing. Atmospheric Chemistry and Physics, 22(2), 1549–1573. https://doi.org/10.5194/acp-22-1549-2022
  4. Roberts, James M., Neuman, J. A., Brown, S. S., Veres, P. R., Coggon, M. M., Stockwell, C. E., et al. (2022). Furoyl peroxynitrate (fur-PAN), a product of VOC–NOx photochemistry from biomass burning emissions: photochemical synthesis, calibration, chemical characterization, and first atmospheric observations. Environmental Science: Atmospheres. https://doi.org/10.1039/D2EA00068G
  5. Robinson, M. A., Neuman, J. A., Huey, L. G., Roberts, J. M., Brown, S. S., & Veres, P. R. (2022). Temperature dependent sensitivity of iodide chemical ionization mass spectrometers. https://doi.org/10.5194/amt-2022-295
  6. Stockwell, C. E., Bela, M. M., Coggon, M. M., Gkatzelis I, G., Wiggins, E., Gargulinski Emily M. and Shingler, T., et al. (2022). Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western US Wildfires. Environmental Science & Technology, 56(12), 7564–7577. https://doi.org/10.1021/acs.est.1c07121
  7. Tao, Y., VandenBoer, T. C., Veres, P. R., Warneke, C., de Gouw, J. A., Weber, R. J., et al. (2022). Hydrogen Chloride (HCl) at Ground Sites During CalNex 2010 and Insight Into Its Thermodynamic Properties. Journal of Geophysical Research-Atmospheres, 127(9). https://doi.org/10.1029/2021JD036062
  8. Xu, L., Coggon, M. M., Stockwell, C. E., Gilman, J. B., Robinson, M. A., Breitenlechner, M., et al. (2022). Chemical ionization mass spectrometry utilizing ammonium ions (NH4+CIMS) for measurements of organic compounds in the atmosphere. Atmospheric Measurement Techniques 15(24), 7353–7373. https://doi.org/10.5194/amt-15-7353-2022

2021

Pole-to-pole airborne observations from the Atmospheric Tomography Mission (ATom) with a chemical transport model (GEOS-Chem CTM) and back-trajectory analyses to provide the first global in situ characterization of HCOOH in the remote atmosphere (Chen et al. 2021)
  1. Chen, X., Millet, D. B., Neuman, J. A., Veres, P. R., Ray, E. A., Commane, R., et al. (2021). HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne Observations. ACS Earth and Space Chemistry, 5(6), 1436–1454. https://doi.org/10.1021/acsearthspacechem.1c00049
  2. Decker, Z. C. J., Robinson, M. A., Barsanti Kelley C. and Bourgeois, I., Coggon, M. M., DiGangi, J. P., Diskin, G. S., et al. (2021). Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmospheric Chemistry and Physics 21(21), 16293–16317. https://doi.org/10.5194/acp-21-16293-2021
  3. Decker, Z. C. J., Wang, S., Bourgeois, I., Jost, P. C., Coggon, M. M., DiGangi, J. P., et al. (2021). Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. Environmental Science & Technology, 55(23), 15646–15657. https://doi.org/10.1021/acs.est.1c03803
  4. Furlani, T. C., Veres, P. R., Dawe, K. E. R., Neuman, J. A., Brown, S. S., VandenBoer, T. C., & Young, C. J. (2021). Validation of a new cavity ring-down spectrometer for measuring tropospheric gaseous hydrogen chloride. Atmospheric Measurement Techniques, 14(8), 5859–5871. https://doi.org/10.5194/amt-14-5859-2021
  5. Hansen, R. F., Griffith, S. M., Dusanter, S., Gilman, J. B., Graus, M., Kuster, W. C., et al. (2021). Measurements of Total OH Reactivity During CalNex-LA. Journal of Geophysical Research-Atmospheres, 126(11). https://doi.org/10.1029/2020JD032988
  6. Liao, J., Wolfe, G. M., Hannun, R. A., St Clair Jason M. and Hanisco, T. F., Gilman, J. B., Lamplugh, A., et al. (2021). Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ). Atmospheric Chemistry and Physics, 21(24), 18319–18331. https://doi.org/10.5194/acp-21-18319-2021
  7. Novak, G. A., Fite, C. H., Holmes, C. D., Veres, P. R., Neuman, J. A., Faloona, I., Thornton, J. A., Wolfe, G. M., Vermeuel, M. P., Jernigan, C. M., Peischl, J., Ryerson, T. B., Thompson, C. R., Bourgeois, I., Warneke, C., Gkatzelis, G. I., et al. (2021). Rapid cloud removal of dimethyl sulfide oxidation products limits SO 2 and cloud condensation nuclei production in the marine atmosphere. Proceedings of the National Academy of Sciences, 118(42). https://doi.org/10.1073/pnas.2110472118
  8. Stockwell, Chelsea E., Bela, M. M., Coggon, M. M., Wiggins, E., Gargulinski, E. M., Shingler, T., et al. (2021). Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires. Environmental Science and Technology. https://doi.org/10.1021/acs.est.1c07121
  9. Tuite, K., Thomas, J. L., Veres, P. R., Roberts, J. M., Stevens, P. S., Griffith, S. M., et al. (2021). Quantifying Nitrous Acid Formation Mechanisms Using Measured Vertical Profiles During the CalNex 2010 Campaign and 1D Column Modeling. Journal of Geophysical Research-Atmospheres, 126(13). https://doi.org/10.1029/2021JD034689
  10. Veres, Patrick R, Neuman, J. A., Bertram, T. H., Assaf, E., Wolfe, G. M., Williamson, C. J., et al. (2021). Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere (vol 117, pg 4505, 2020). Proceedings of the National Academy of Sciences, 118(36). https://doi.org/10.1073/pnas.2113268118
  11. Wang, S., Coggon, M. M., Gkatzelis I, G., Warneke, C., Bourgeois, I., Ryerson, T., et al. (2021). Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study. Journal of Geophysical Research-Atmospheres, 126(18). https://doi.org/10.1029/2021JD035203
  12. Wang, X., Jacob, D. J., Downs, W., Zhai, S., Zhu, L., Shah, V., et al. (2021). Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants. Atmospheric Chemistry and Physics, 21(18), 13973–13996. https://doi.org/10.5194/acp-21-13973-2021
  13. Xu, L., Crounse, J. D., Vasquez, K. T., Allen Hannah and Wennberg, P. O., Bourgeois, I., Brown, S. S., et al. (2021). Ozone chemistry in western US wildfire plumes. Science Advances, 7(50). https://doi.org/10.1126/sciadv.abl3648

2020

Measurements of HPMTF during the ATom mission. (Veres et al. 2020)
  1. Brune, W. H., Miller, D. O., Thames, A. B., Allen, H. M., Apel, E. C., Blake, D. R., et al. (2020). Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom). Journal of Geophysical Research-Atmospheres, 125(1). https://doi.org/10.1029/2019JD031685
  2. Ji, Y., Huey, G., Tanner, D. J., Lee, Y. R., Veres, P. R., Neuman, J. A., et al. (2020). A vacuum ultraviolet ion source (VUV-IS) for iodide-chemical ionization mass spectrometry: a substitute for radioactive ion sources. Atmospheric Measurement Techniques, 13(7), 3683–3696. https://doi.org/10.5194/amt-13-3683-2020
  3. Lao, M., Crilley, L. R., Salehpoor, L., Furlani, T. C., Bourgeois, I., Neuman, J. A., et al. (2020). A portable, robust, stable, and tunable calibration source for gas-phase nitrous acid (HONO). Atmospheric Measurement Techniques, 13(11), 5873–5890. https://doi.org/10.5194/amt-13-5873-2020
  4. Veres, Patrick R., Neuman, J. A., Bertram, T. H., Assaf, E., Wolfe, G. M., Williamson, C. J., et al. (2020). Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. Proceedings of the National Academy of Sciences, 117(9), 4505–4510. https://doi.org/10.1073/pnas.1919344117

2019

Analysis of nighttime aircraft intercepts of agricultural BB plumes using observations from the NOAA WP-3D aircraft during the 2013 Southeast Nexus (SENEX) campaign (Decker et al 2019)
  1. Chen, X., Millet, D. B., Singh, H. B., Wisthaler, A., Apel, E. C., Atlas, E. L., et al. (2019). On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. Atmospheric Chemistry and Physics, 19(14), 9097–9123. https://doi.org/10.5194/acp-19-9097-2019
  2. Decker, Z. C. J., Zarzana, K. J., Coggon, M., Min, K.-E., Pollack, I., Ryerson, T. B., et al. (2019). Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis Initialized with Aircraft Observations. Environmental Science & Technology, 53(5), 2529–2538. https://doi.org/10.1021/acs.est.8b05359
  3. de Gouw, J. A., Parrish, D. D., Brown, S. S., Edwards, P., Gilman, J. B., Graus, M., et al. (2019). Hydrocarbon Removal in Power Plant Plumes Shows Nitrogen Oxide Dependence of Hydroxyl Radicals. Geophysical Research Letters, 46(13), 7752–7760. https://doi.org/10.1029/2019GL083044
  4. Haskins, J. D., Lopez-Hilfiker, F. D., Lee, B. H., Shah, V., Wolfe, G. M., DiGangi, J., et al. (2019). Anthropogenic Control Over Wintertime Oxidation of Atmospheric Pollutants. Geophysical Research Letters, 46(24), 14826–14835. https://doi.org/10.1029/2019GL085498
  5. Liu, X., Deming, B., Pagonis, D., Day, D. A., Palm, B. B., Talukdar, R., et al. (2019). Effects of gas-wall interactions on measurements of semivolatile compounds and small polar molecules. Atmospheric Measurement Techniques, 12(6), 3137–3149. https://doi.org/10.5194/amt-12-3137-2019
  6. Womack, C C, McDuffie, E. E., Edwards, P. M., Bares, R., de Gouw, J. A., Docherty, K. S., et al. (2019). An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NOx and VOC Control as Mitigation Strategies. Geophysical Research Letters, 46(9), 4971–4979. https://doi.org/10.1029/2019GL082028

2018

Quantification of ambient mixing ratios of decamethylcyclopentasiloxane (D5) from ground sites in two North American cities (Boulder, CO, USA, and Toronto, ON, CA) (Coggon et al. 2018)
  1. Coggon, M. M., McDonald, B. C., Vlasenko, A., Veres, P. R., Bernard, F., Koss, A. R., et al. (2018). Diurnal Variability and Emission Pattern of Decamethylcyclopentasiloxane (D-5) from the Application of Personal Care Products in Two North American Cities. Environmental Science & Technology, 52(10), 5610–5618. https://doi.org/10.1021/acs.est.8b00506
  2. de Gouw, J. A., Gilman, J. B., Kim, S.-W., Alvarez, S. L., Dusanter, S., Graus, M., et al. (2018). Chemistry of Volatile Organic Compounds in the Los Angeles Basin: Formation of Oxygenated Compounds and Determination of Emission Ratios. Journal of Geophysical Research-Atmospheres, 123(4), 2298–2319. https://doi.org/10.1002/2017JD027976
  3. Jaegle, L., Shah, V., Thornton, J. A., Lopez-Hilfiker F. D. and Lee, B. H., McDuffie, E. E., Fibiger, D., et al. (2018). Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign. Journal of Geophysical Research-Atmospheres, 123(21), 12368–12393. https://doi.org/10.1029/2018JD029133
  4. Lee, B. H., Lopez-Hilfiker, F. D., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., McDuffie, E. E., et al. (2018). Airborne Observations of Reactive Inorganic Chlorine and Bromine Species in the Exhaust of Coal-Fired Power Plants. Journal of Geophysical Research-Atmospheres, 123(19), 11225–11237. https://doi.org/10.1029/2018JD029284
  5. Lee, B. H., Lopez-Hilfiker, F. D., Veres, P. R., McDuffie, E. E., Fibiger, D. L., Sparks, T. L., et al. (2018). Flight Deployment of a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer: Observations of Reactive Halogen and Nitrogen Oxide Species. Journal of Geophysical Research-Atmospheres, 123(14), 7670–7686. https://doi.org/10.1029/2017JD028082
  6. Li, J., Mao, J., Fiore, A. M., Cohen Ronald C. and Crounse, J. D., Teng, A. P., Wennberg, P. O., et al. (2018). Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. Atmospheric Chemistry and Physics, 18(3), 2341–2361. https://doi.org/10.5194/acp-18-2341-2018
  7. McDuffie, E. E., Fibiger, D. L., Dube, W. P., Hilfiker, F. L., Lee, B. H., Jaegle, L., et al. (2018). ClNO2 Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization. Journal of Geophysical Research-Atmospheres, 123(22), 12994–13015. https://doi.org/10.1029/2018JD029358
  8. McDuffie, E. E., Fibiger, D. L., Dube, W. P., Lopez-Hilfiker, F., Lee, B. H., Thornton, J. A., et al. (2018). Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. Journal of Geophysical Research-Atmospheres, 123(8), 4345–4372. https://doi.org/10.1002/2018JD028336

2017

Transition from high- to low-NOx control of night-time oxidation in the southeastern US (Edwards et al. 2017)
  1. Edwards, P M, Aikin, K. C., Dube, W. P., Fry, J. L., Gilman, J. B., de Gouw, J. A., et al. (2017). Transition from high- to low-NOx control of night-time oxidation in the southeastern US. NATURE GEOSCIENCE, 10(7), 490+. https://doi.org/10.1038/NGEO2976
  2. Guo, H., Liu, J., Froyd, K. D., Roberts James M. and Veres, P. R., Hayes, P. L., Jimenez, J. L., et al. (2017). Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign. Atmospheric Chemistry and Physics, 17(9), 5703–5719. https://doi.org/10.5194/acp-17-5703-2017
  3. Hatch, L. E., Yokelson, R. J., Stockwell, C. E., Veres, P. R., Simpson, I. J., Blake, D. R., et al. (2017). Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors. Atmospheric Chemistry and Physics, 17(2), 1471–1489. https://doi.org/10.5194/acp-17-1471-2017
  4. Jathar, S. H., Heppding, C., Link, M. F., Farmer, D. K., Akherati, A., Kleeman, M. J., et al. (2017). Investigating diesel engines as an atmospheric source of isocyanic acid in urban areas. Atmospheric Chemistry and Physics, 17(14), 8959–8970. https://doi.org/10.5194/acp-17-8959-2017
  5. Kessel, S., Cabrera-Perez, D., Horowitz, A., Veres, P. R., Sander, R., Taraborrelli, D., et al. (2017). Atmospheric chemistry, sources and sinks of carbon suboxide, C3O2. Atmospheric Chemistry and Physics, 17(14), 8789–8804. https://doi.org/10.5194/acp-17-8789-2017
  6. Koss, A., Yuan, B., Warneke, C., Gilman Jessica B. and Lerner, B. M., Veres, P. R., Peischl, J., et al. (2017). Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS). Atmospheric Measurement Techniques, 10(8), 2941–2968. https://doi.org/10.5194/amt-10-2941-2017
  7. Marvin, M. R., Wolfe, G. M., Salawitch, R. J., Canty, T. P., Roberts, S. J., Travis, K. R., et al. (2017). Impact of evolving isoprene mechanisms on simulated formaldehyde: An inter-comparison supported by in situ observations from SENEX. Atmospheric Environment, 164, 325–336. https://doi.org/10.1016/j.atmosenv.2017.05.049
  8. Tkacik, D. S., Robinson, E. S., Ahern, A., Saleh, R., Stockwell, C., Veres, P., et al. (2017). A dual-chamber method for quantifying the effects of atmospheric perturbations on secondary organic aerosol formation from biomass burning emissions. Journal of Geophysical Research-Atmospheres, 122(11), 6043–6058. https://doi.org/10.1002/2016JD025784
  9. Womack, Caroline C, Neuman, J. A., Veres, P. R., Eilerman, S. J., Brock, C. A., Decker, Z. C. J., et al. (2017). Evaluation of the accuracy of thermal dissociation CRDS and LIF techniques for atmospheric measurement of reactive nitrogen species. Atmospheric Measurement Techniques, 10(5), 1911–1926. https://doi.org/10.5194/amt-10-1911-2017

2016

  1. Coggon, M. M., Veres, P. R., Yuan, B., Koss Abigail and Warneke, C., Gilman, J. B., Lerner, B. M., et al. (2016). Emissions of nitrogen-containing organic compounds from the burning of herbaceous and arboraceous biomass: Fuel composition dependence and the variability of commonly used nitrile tracers. Geophysical Research Letters, 43(18), 9903–9912. https://doi.org/10.1002/2016GL070562
  2. de Gouw, J., Koss, A., Yuan, B., Coggon, M., Sekimoto, K., Veres, P., et al. (2016). Measurements of volatile organic compounds in the atmosphere using a novel H3O+time-of-flight chemical ionization mass spectrometry instrument. Abstracts of Papers of the American Chemical Society, 252.
  3. Griffith, S. M., Hansen, R. F., Dusanter, S., Michoud, V., Gilman, J. B., Kuster, W. C., et al. (2016). Measurements of hydroxyl and hydroperoxy radicals during CalNex-LA: Model comparisons and radical budgets. Journal of Geophysical Research-Atmospheres, 121(8), 4211–4232. https://doi.org/10.1002/2015JD024358
  4. Koss, A. R., Warneke, C., Yuan, B., Coggon, M. M., Veres, P. R., & de Gouw, J. A. (2016). Evaluation of NO+ reagent ion chemistry for online measurements of atmospheric volatile organic compounds. Atmospheric Measurement Techniques, 9(7), 2909–2925. https://doi.org/10.5194/amt-9-2909-2016
  5. Link, M. F., Friedman, B., Fulgham, R., Brophy, P., Galang, A., Jathar, S. H., et al. (2016). Photochemical processing of diesel fuel emissions as a large secondary source of isocyanic acid (HNCO). Geophysical Research Letters, 43(8), 4033–4041. https://doi.org/10.1002/2016GL068207
  6. Neuman, J. A., Trainer, M., Brown, S. S., Min, K.-E., Nowak, J. B., Parrish, D. D., et al. (2016). HONO emission and production determined from airborne measurements over the Southeast US. Journal of Geophysical Research-Atmospheres, 121(15), 9237–9250. https://doi.org/10.1002/2016JD025197
  7. Thornton, J., Lopez-Hilfiker, F., Lee, B., Haskins, J., Shah, V., Jaegle, L., et al. (2016). Partitioning and activation of reactive chlorine during the WINTER C-130 aircraft campaign: implications for wintertime oxidant budgets. Abstracts of Papers of the American Chemical Society, 252.
  8. Warneke, Carsten, Trainer, M., de Gouw, J. A., Parrish, D. D., Fahey, D. W., Ravishankara, A. R., et al. (2016). Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013. Atmospheric Measurement Techniques, 9(7), 3063–3093. https://doi.org/10.5194/amt-9-3063-2016
  9. Wild, R J, Edwards, P. M., Bates, T. S., Cohen, R. C., de Gouw, J. A., Dube, W. P., et al. (2016). Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. Atmospheric Chemistry and Physics, 16(2), 573–583. https://doi.org/10.5194/acp-16-573-2016
  10. Wolfe, G. M., Kaiser, J., Hanisco, T. F., Keutsch, F. N., de Gouw, J. A., Gilman, J. B., et al. (2016). Formaldehyde production from isoprene oxidation across NOx regimes. Atmospheric Chemistry and Physics, 16(4), 2597–2610. https://doi.org/10.5194/acp-16-2597-2016
  11. Zoerner, J., de Vries, M. P., Beirle, S., Sihler, H., Veres, P. R., Williams, J., & Wagner, T. (2016). Multi-satellite sensor study on precipitation-induced emission pulses of NOx from soils in semi-arid ecosystems. Atmospheric Chemistry and Physics, 16(14), 9457–9487. https://doi.org/10.5194/acp-16-9457-2016

2015

  1. Ahmadov, R., McKeen, S., Trainer, M., Banta, R., Brewer A. and Brown, S., Edwards, P. M., et al. (2015). Understanding high wintertime ozone pollution events in an oil- and natural gas-producing region of the western US. Atmospheric Chemistry and Physics, 15(1), 411–429. https://doi.org/10.5194/acp-15-411-2015
  2. Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R., et al. (2015). Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US. Atmospheric Chemistry and Physics, 15(24), 13915–13938. https://doi.org/10.5194/acp-15-13915-2015
  3. de Gouw, J. A., McKeen, S. A., Aikin, K. C., Brock, C. A., Brown, S. S., Gilman, J. B., et al. (2015). Airborne measurements of the atmospheric emissions from a fuel ethanol refinery. Journal of Geophysical Research-Atmospheres, 120(9), 4385–4397. https://doi.org/10.1002/2015JD023138
  4. Jardine, K., Yanez-Serrano, A. M., Williams, J., Kunert, N., Jardine, A., Taylor, T., et al. (2015). Dimethyl sulfide in the Amazon rain forest. Global Biogeochemical Cycles, 29(1), 19–32. https://doi.org/10.1002/2014GB004969
  5. Mao, J., Li, J., Horowitz, L., Naik, V., Paulot, F., Lin, M., et al. (2015). How does nighttime oxidation of biogenic VOCs impact daytime ozone? Abstracts of Papers of the American Chemical Society, 249.
  6. Pusede, S. E., VandenBoer, T. C., Murphy, J. G., Markovic, M. Z., Young, C. J., Veres, P. R., et al. (2015). An Atmospheric Constraint on the NO2 Dependence of Daytime Near-Surface Nitrous Acid (HONO). Environmental Science & Technology, 49(21), 12774–12781. https://doi.org/10.1021/acs.est.5b02511
  7. Stockwell, C E, Veres, P. R., Williams, J., & Yokelson, R. J. (2015). Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry. Atmospheric Chemistry and Physics, 15(2), 845–865. https://doi.org/10.5194/acp-15-845-2015
  8. Thompson, C., Hueber, J., Helmig, D., de Gouw, J., Koss, A., Roberts, J., & Veres, P. (2015). Evidence for snow photochemistry and surface emissions from a polluted, midlatitude snowpack in the Uinta Basin, Utah. Abstracts of Papers of the American Chemical Society, 250.
  9. Veres, P. R., & Roberts, J. M. (2015). Development of a photochemical source for the production and calibration of acyl peroxynitrate compounds. Atmospheric Measurement Techniques, 8(5), 2225–2231. https://doi.org/10.5194/amt-8-2225-2015
  10. Veres, P R, Roberts, J. M., Wild, R. J., Edwards, P. M., Brown, S. S., Bates, T. S., et al. (2015). Peroxynitric acid (HO2NO2) measurements during the UBWOS 2013 and 2014 studies using iodide ion chemical ionization mass spectrometry. Atmospheric Chemistry and Physics, 15(14), 8101–8114. https://doi.org/10.5194/acp-15-8101-2015
  11. Veres, Patrick, Roberts, J., Alvarez, S., Bates, T., Brown, S., Colosimo, F., et al. (2015). Insights into the chemistry and impacts of peroxynitric acid (HO2NO2) and nitrous acid (HONO) on wintertime ozone formation in the Uintah Basin. Abstracts of Papers of the American Chemical Society, 250.
  12. Warneke, C, Veres, P., Murphy, S. M., Soltis, J., Field, R. A., Graus, M. G., et al. (2015). PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013. Atmospheric Measurement Techniques, 8(1), 411–420. https://doi.org/10.5194/amt-8-411-2015
  13. Yuan, B., Veres, P. R., Warneke, C., Roberts, J. M., Gilman, J. B., Koss, A., et al. (2015). Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region. Atmospheric Chemistry and Physics, 15(4), 1975–1993. https://doi.org/10.5194/acp-15-1975-2015

2014

  1. Edwards, Peter M, Brown, S. S., Roberts, J. M., Ahmadov, R., Banta, R. M., deGouw, J. A., et al. (2014). High winter ozone pollution from carbonyl photolysis in an oil and gas basin. NATURE, 514(7522), 351+. https://doi.org/10.1038/nature13767
  2. Behrendt, T., Veres, P. R., Ashuri, F., Song, G., Flanz M. and Mamtimin, B., Bruse, M., et al. (2014). Characterization of NO production and consumption: new insights by an improved laboratory dynamic chamber technique. Biogeosciences, 11(19), 5463–5492. https://doi.org/10.5194/bg-11-5463-2014
  3. Brown, S. S., Edwards, P., Roberts, J., Aikin, K., Banta, R., de Gouw, J., et al. (2014). Winter ozone photochemistry in an oil and gas producing mountain basin. Abstracts of Papers of the American Chemical Society, 248.
  4. Kelly, J. T., Baker, K. R., Nowak, J. B., Murphy, J. G., Markovic, M. Z., VandenBoer, T. C., et al. (2014). Fine-scale simulation of ammonium and nitrate over the South Coast Air Basin and San Joaquin Valley of California during CalNex-2010. Journal of Geophysical Research-Atmospheres, 119(6), 3600–3614. https://doi.org/10.1002/2013JD021290
  5. Li, R., Warneke, C., Graus, M., Field, R., Geiger, F., Veres, P. R., et al. (2014). Measurements of hydrogen sulfide (H2S) using PTR-MS: calibration, humidity dependence, inter-comparison and results from field studies in an oil and gas production region. Atmospheric Measurement Techniques, 7(10), 3597–3610. https://doi.org/10.5194/amt-7-3597-2014
  6. Noelscher, A. C., Butler, T., Auld, J., Veres, P., Munoz A. and Taraborrelli, D., Vereecken, L., et al. (2014). Using total OH reactivity to assess isoprene photooxidation via measurement and model. Atmospheric Environment, 89, 453–463. https://doi.org/10.1016/j.atmosenv.2014.02.024
  7. Riedel, T. P., Wolfe, G. M., Danas, K. T., Gilman, J. B., Kuster, W. C., Bon, D. M., et al. (2014). An MCM modeling study of nitryl chloride (ClNO2) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow. Atmospheric Chemistry and Physics, 14(8), 3789–3800. https://doi.org/10.5194/acp-14-3789-2014
  8. Roberts, James M, Veres, P. R., VandenBoer, T. C., Warneke, C., Graus, M., Williams, E. J., et al. (2014). New insights into atmospheric sources and sinks of isocyanic acid, HNCO, from recent urban and regional observations. Journal of Geophysical Research-Atmospheres, 119(2), 1060–1072. https://doi.org/10.1002/2013JD019931
  9. Roberts, James M, Veres, P. R., McLaren, R., Kercher, J., Thornton, J., Brown, S. B., et al. (2014). Nitryl chloride (ClNO2) and its chemistry during the Uintah Basin Winter Ozone Studies. Abstracts of Papers of the American Chemical Society, 248.
  10. Thornton, J. A., Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Gaston, C., D’Ambro, E., et al. (2014). Homogenous and heterogeneous chemistry of nocturnal nitrogen oxides in high biogenic VOC environments: Implications for NOx removal, halogen activation, and SOA formation. Abstracts of Papers of the American Chemical Society, 248.
  11. Wild, Robert J, Edwards, P. M., Dube, W. P., Baumann, K., Edgerton, E. S., Quinn, P. K., et al. (2014). A Measurement of Total Reactive Nitrogen, NOy, together with NO2, NO, and O-3 via Cavity Ring-down Spectroscopy. Environmental Science & Technology, 48(16), 9609–9615. https://doi.org/10.1021/es501896w
  12. Young, C J, Washenfelder, R. A., Edwards, P. M., Parrish, D. D., Gilman, J. B., Kuster, W. C., et al. (2014). Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles. Atmospheric Chemistry and Physics, 14(7), 3427–3440. https://doi.org/10.5194/acp-14-3427-2014

2013

  1. Chen, D., Li, Q., Stutz, J., Mao, Y., Zhang Li and Pikelnaya, O., Tsai, J. Y., et al. (2013). WRF-Chem simulation of NOx and O-3 in the LA basin during CalNex-2010. Atmospheric Environment, 81, 421–432. https://doi.org/10.1016/j.atmosenv.2013.08.064
  2. Ensberg, J. J., Craven, J. S., Metcalf, A. R., Allan, J. D., Angevine, W. M., Bahreini, R., et al. (2013). Inorganic and black carbon aerosols in the Los Angeles Basin during CalNex. Journal of Geophysical Research-Atmospheres, 118(4), 1777–1803. https://doi.org/10.1029/2012JD018136
  3. Faber, P., Drewnick, F., Veres, P. R., Williams, J., & Borrmann, S. (2013). Anthropogenic sources of aerosol particles in a football stadium: Real-time characterization of emissions from cigarette smoking, cooking, hand flares, and color smoke bombs by high-resolution aerosol mass spectrometry. Atmospheric Environment, 77, 1043–1051. https://doi.org/10.1016/j.atmosenv.2013.05.072
  4. Mielke, L. H., Stutz, J., Tsai, C., Hurlock, S. C., Roberts, J. M., Veres, P. R., et al. (2013). Heterogeneous formation of nitryl chloride and its role as a nocturnal NOx reservoir species during CalNex-LA 2010. Journal of Geophysical Research-Atmospheres, 118(18), 10638–10652. https://doi.org/10.1002/jgrd.50783
  5. Veres, Patrick R, Faber, P., Drewnick, F., Lelieveld, J., & Williams, J. (2013). Anthropogenic sources of VOC in a football stadium: Assessing human emissions in the atmosphere. Atmospheric Environment, 77, 1052–1059. https://doi.org/10.1016/j.atmosenv.2013.05.076
  6. Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stockwell, C. E., de Gouw, J., et al. (2013). Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmospheric Chemistry and Physics, 13(1), 89–116. https://doi.org/10.5194/acp-13-89-2013

2012

  1. Liu, J., Zhang, X., Parker, E. T., Veres Patrick R. and Roberts, J. M., de Gouw, J. A., Hayes, P. L., et al. (2012). On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 2. Gas and particle phase formic acid. Journal of Geophysical Research-Atmospheres, 117. https://doi.org/10.1029/2012JD017912
  2. Murphy, J. G., Ellis, R. A., Markovic, M. Z., VandenBoer, T. C., Petroff, A., Gregoire, P., et al. (2012). Significance of supermicron particles for atmospheric nitrogen oxides. Abstracts of Papers of the American Chemical Society, 244.
  3. Young, Cora J, Washenfelder, R. A., Roberts, J. M., Mielke, L. H., Osthoff, H. D., Tsai, C., et al. (2012). Vertically Resolved Measurements of Nighttime Radical Reservoirs in Los Angeles and Their Contribution to the Urban Radical Budget. Environmental Science & Technology, 46(20), 10965–10973. https://doi.org/10.1021/es302206a
  4. Young, P. J., Emmons, L. K., Roberts, J. M., Lamarque, J.-F., Wiedinmyer, C., Veres, P., & VandenBoer, T. C. (2012). Isocyanic acid in a global chemistry transport model: Tropospheric distribution, budget, and identification of regions with potential health impacts. Journal of Geophysical Research-Atmospheres, 117. https://doi.org/10.1029/2011JD017393

2011

  1. Brock, C. A., Cozic, J., Bahreini, R., Froyd, K. D., Middlebrook, A. M., McComiskey, A., et al. (2011). Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. Atmospheric Chemistry and Physics, 11(6), 2423–2453.  https://doi.org/10.5194/acp-11-2423-2011
  2. Roberts, James M, Veres, P. R., Cochran, A. K., Warneke, C., Burling, I. R., Yokelson, R. J., et al. (2011). Isocyanic acid in the atmosphere and its possible link to smoke-related health effects (vol 108, pg 8966, 2011). Proceedings of the National Academy of Sciences, 108(41), 17234. https://doi.org/10.1073/pnas.1113250108
  3. Roberts, James M, VandenBoer, T. C., Brown, S. B., Dube, W. P., Wagner, N., Young, C., et al. (2011). Measurements of isocyanic acid (HNCO) from agricultural burning. Abstracts of Papers of the American Chemical Society, 242.
  4. VandenBoer, T. C., Markovic, M. Z., Veres, P., Vaca, P., Cochran, A., Ellis, R., et al. (2011). HCl surface measurements during CalNex and vertical profiles during NACHTT: Implications of partitioning thermodynamics, acid displacement and chlorine activation through heterogeneous chemistry. Abstracts of Papers of the American Chemical Society, 242.
  5. Veres, Patrick R, Roberts, J. M., Cochran, A. K., Gilman, J. B., Kuster, W. C., Holloway, J. S., et al. (2011). Evidence of rapid production of organic acids in an urban air mass. Geophysical Research Letters, 38. https://doi.org/10.1029/2011GL048420
  6. Warneke, C, Veres, P., Holloway, J. S., Stutz, J., Tsai C. and Alvarez, S., Rappenglueck, B., et al. (2011). Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results. Atmospheric Measurement Techniques, 4(10), 2345–2358. https://doi.org/10.5194/amt-4-2345-2011
  7. Warneke, C, Roberts, J. M., Veres, P., Gilman, J., Kuster, W. C., Burling, I., et al. (2011). VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS. Internal Journal of Mass Spectrometry, 303(1), 6–14. https://doi.org/10.1016/j.ijms.2010.12.002
  8. Young, Cora J, Washenfelder, R. A., Brown, S. S., Gilman, J. B., Kuster, W. C., Veres, P., et al. (2011). Heterogeneous radical production from HONO formation: Analysis of data from Los Angeles and Colorado. Abstracts of Papers of the American Chemical Society, 242.

2010

  1. Burling, I. R., Yokelson, R. J., Griffith, D. W. T., Johnson, T. J., Veres, P., Roberts, J. M., et al. (2010). Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States. Atmospheric Chemistry and Physics, 10(22), 11115–11130. https://doi.org/10.5194/acp-10-11115-2010
  2. Roberts, J M, Veres, P., Warneke, C., Neuman, J. A., Washenfelder, R. A., Brown, S. S., et al. (2010). Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions. Atmospheric Measurement Techniques, 3(4), 981–990. https://doi.org/10.5194/amt-3-981-2010
  3. Veres, P, Gilman, J. B., Roberts, J. M., Kuster, W. C., Warneke, C., Burling, I. R., & de Gouw, J. (2010). Development and validation of a portable gas phase standard generation and calibration system for volatile organic compounds. Atmospheric Measurement Techniques, 3(3), 683–691. https://doi.org/10.5194/amt-3-683-2010
  4. Veres, Patrick, Roberts, J. M., Burling, I. R., Warneke, C., de Gouw, J., & Yokelson, R. J. (2010). Measurements of gas-phase inorganic and organic acids from biomass fires by negative-ion proton-transfer chemical-ionization mass spectrometry. Journal of Geophysical Research-Atmospheres, 115. https://doi.org/10.1029/2010JD014033

2009

  1. Warneke, C, Bahreini, R., Brioude, J., Brock, C. A., de Gouw, J. A., Fahey, D. W., et al. (2009). Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophysical Research Letters, 36. https://doi.org/10.1029/2008GL036194

2008

  1. Veres, Patrick, Roberts, J. M., Warneke, C., Welsh-Bon, D., Zahniser, M., Herndon, S., et al. (2008). Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere. International Journal of Mass Spectrometry, 274(1–3), 48–55. https://doi.org/10.1016/j.ijms.2008.04.032
  2. White, M. L., Russo, R. S., Zhou, Y., Mao, H., Varner R. K. and Ambrose, J., Veres, P., et al. (2008). Volatile organic compounds in northern New England marine and continental environments during the ICARTT 2004 campaign. Journal of Geophysical Research-Atmospheres, 113(D8). https://doi.org/10.1029/2007JD009161

2007

  1. Monson, R.K., Trahan, N., Rosenstiel, T.N., Veres, P., Moore, D., Wilkinson, M., et al. (2007). Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 365(1856), 1677–1695. https://doi.org/10.1098/rsta.2007.2038

Create a website or blog at WordPress.com

%d bloggers like this: